
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Development Of Software Inspection Tool By Performing SlicingDevelopment Of Software Inspection Tool By Performing SlicingDevelopment Of Software Inspection Tool By Performing SlicingDevelopment Of Software Inspection Tool By Performing Slicing

Rakhee Kundu
1
, Umesh Kulkarni

2

1
Computer Engineering, ARMIET, Affiliated to Mumbai University, India

2
Computer Engineering, VIT, Affiliated to Mumbai University, India

ABSTRACT : Although software inspection has led

to improvements in software quality, many software

systems continue to be deployed with unacceptable

numbers of errors, even when software inspection is

part of the development process. The difficulty of

manually verifying that the software under inspection

conforms to the rules is partly to blame. We describe

the design and development of a tool designed to help

alleviate this problem. The tool provides mechanisms

for inspection of software by exposing the results of

sophisticated whole-program static analysis to the

inspector. The tool computes many static-semantic

representations of the program, forward and

backward slicing and dependence factors. Whole-

program pointer analysis is used to make sure that the

representation is precise with respect to aliases

induced by pointer usage. Views on the dependency

and related representations are supported. Queries on

the dependence graph allow an inspector to answer

detailed questions about the semantics of the

program. Facilities for openness and extensibility

permit the tool to be integrated with many software-

development processes. The main challenge of the

approach is to provide facilities to navigate and

manage the enormous complexity of the dependence

graph. Which will test the correctness of the program

by identifying some of the rules .Whether particular

variable in the program is working or malfunctioning,

Checking the malfunctioning by the dependency

factors by using backward and forward slicing. This

will identify the checkpoints and not to identify the

errors and which area a particular checkpoint is

getting effected will be reflected.

Keywords – Abstract Syntax Tree, Program

Dependence Graph (PDG), Predecessor, Slicing,

Successor.

1. Introduction

1.1 Why use testing?

"Testing can consume over 50 percent of

software development costs (note that testing

costs should not include debugging and rework

costs). In one particular case, NASA's Apollo

program, 80 percent of the total software

development effort was incurred by

testing."Some projects canԀ t afford any failures

at all during operation like the Apollo project. It

can also be that the customers accept some faults

that are fixed later under maintenance because

the product will be cheaper. So the time spent

during testing much depends on what reliability

level that are asked for. One advantage with

testing can be that it is closer to the way the end-

user will use the system. They will fell that the

product has a higher quality because the defects

is outside the normal execution. The program

will become more reliable by finding the most

common failures.

Inspection will more look for correctness there a

more common executed fault and a more rarely

fault is equally easy to find. I have found in the

project that I have been involved in that the test

phase often has less priority than other phases. If

the project is getting late is it likely that the time

for testing will be cut down. This can especially

be a problem if the test phase is located at the

end of the project and not during the entire

project. Inspection can be effective when same

method can be used on a lot of different

documents and testing is effective when it comes

to rerunning the same test.

A good tool for automated testing can take some

time to develop but can be executed many times.

This can save a lot of time because many

systems today are released over and over again.

One problem with automated tools is that we

need to write additional code and we will not

know if the defect is in the systems code or in

the test code. There exist areas where testing is

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

the only option and where you canԀ t find the

defects with inspection. Example is tests that test

if the system has the right quality attributes with

performance and stress testing. But it is also

when the developer doesn’t have access to

the code such as with third party software

components and different APIԀ s. Different

environments outside the program must also be

tested, for example running Java applications in

different operative systems or applets in different

browsers. But there are also things that you can’t

find with testing such as lack of traceability,

design faults etc. It can also be easy to miss

faults in code that is not normally executed like

exceptions handing.

1.2. Nothing is perfect

Inspections focuses on finding faults, whereas

testing mainly focuses on finding failures (which

are the result of one or many faults). They are

more compliments to each other than competing

methods because they are used to find different

faults and in different areas.

Developers will probably need to use both

inspection and testing to achieve a product with

high quality and still be within budget. ”

Software inspections can identify and eliminate

approximately 80 percent of all software defects

during development. When inspections are

combined with normal testing practices, defects

in fielded software can be reduced by a factor of

10.” However, researches have shown that the

order in which the inspection and the testing are

performed will affect the number of defects

found. The best way, according to these

researches, are to make inspection first and after

that the testing. Thus, What we have found when

reading about the two methods is that both is

good and must be used to achieve a product that

has a high quality and satisfies the end users.

They are used for different reasons and in

different phases during the project. Each

technique has its advantage and way of

approaching the search for defects. Their

respective strengths help finding different kinds

of defects.

Inspections are better for finding errors in

design, requirements documents, source code

etc. Testing is the only way of finding

operational defects, and to make sure that non-

functional requirements are working as they are

supposed to.

Tests cannot find errors in requirements

documents or in the source code. It depends on

previous experience and knowledge about the

problem domain among the team members

which method that is used. The people

performing an inspection may not have the

necessary knowledge about the product domain

or they may be overloaded with information in

the initial stage of the inspection, etc then defects

can easily be missed. Testers don’t have the

same problem because they have test cases to

follow.

2. Dependence Graphs

Dependence graphs have applications in a wide range

of activities, including parallelization , optimization ,

reverse engineering, program testing , and software

assurance . Fig. 1 shows the dependence-graph

representation for a simple program with two

procedures. This section briefly describes

dependence graphs and how they are built.

A Program Dependence Graph (PDG) is a directed

graph for a single procedure of a program. The

vertices of the graph represent constructs such as

assignment statements, call sites, parameter ,and

condition branches.

Figure 2.1 Program Dependance Graph

An edge between the vertices indicates either a data

dependence or a control dependence. The data-

dependence edges indicate possible ways in which

data values can be transmitted. For example, in Fig.

1, there is a data dependence edge between the vertex

for i=1 and the vertex for while (i < 11), which

indicates that a value for i may flow between those

two vertices.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

A control-dependence edge between a source vertex

and a destination vertex indicates that the result of

executing the source vertex controls whether or not

the destination vertex is reached. For example, in Fig.

1, there is a control dependence edge between the

vertex for while (i<11) and the vertices for the two

call sites on the function add. A System Dependence

Graph (SDG) is a directed graph consisting of

interconnected PDGs , one per procedure in the

program. Inter procedural control-dependence edges

connect procedure call sites to the entry points of

called procedures. Inter procedural data-dependence

edges represent the flow of data between actual

parameters and formal parameters (and return

values). Nonlocal variables, such as global, file

statics, and variables accessed indirectly through

pointers, are handled by modeling the program as if

those variables are passed in and out as parameters to

the program’s procedures. Each nonlocal variable

used in a function, either directly or indirectly, is

treated as a “hidden” input parameter and, thus, gives

rise to additional program points. These serve as the

function’s local working copy of the nonlocal

variable. If the variable is modified in the function,

then it has an associated output parameter as well.

The process of creating the dependence graph is

described in the following sections.

2.1 Front End

For each source file in the system, a language-

specific front end is invoked. Its responsibility is to

create intermediate files that will be used in

subsequent phases:

1. Information from the preprocessor phase, such as

the include tree and macro usage, is recorded.

Information about the basic structure of the

preprocessed source file is recorded. In particular, the

line and column numbers of each construct in the

source file are recorded.

2. The occurrences and usages of pointer variables

are collected.

3. The abstract syntax tree (AST) and symbol table

are created. These are then used to create a control-

flow graph (CFG).

2.2 Pointer Analysis

The pointer-analysis phase creates the points-to graph

for the entire program. A points-to graph is a directed

graph with vertices corresponding to variables (and

structure fields, arrays, and procedures) and edges

indicating the points-to relation between variables .

For example, if during program execution x may hold

the address of y, then the points-to graph contains an

edge from x to y. Heap allocated memory is modeled

by introducing one synthetic variable for each

occurrence in the program of a construct that

allocates memory from the heap. Pointers to heap

allocated variables are said to point to these synthetic

variables. Constant pointer-valued objects, such as

strings, can be modeled either individually, or via a

single abstract location which acts as a proxy for

them all. The main pointer analysis algorithm

implemented is that due to Andersen , with an option

to treat structure fields separately. The points-to

graph is written out as a database. This database is

consulted during phases of the SDG builder.

2.3 The SDG Builder

The SDG builder creates the final dependence graph

in several phases. The graph is stored in its entirety in

memory that is memory-mapped to a file.

1. A first approximation to the call graph is created

by reading the CFGs for all source files, extracting

callsite vertices, and connecting them with call edges.

2. The final call graph is created by resolving indirect

call sites by consulting the previously created point

sto database. An indirect call through a pointer fp is

treated as a possible call to all functions in the points-

to set of fp.

A depth-first search is then performed on the call

graph to partition it into strongly connected

components. Several subsequent phases are carried

out by traversals over the partitioned call graph, often

with an iterative computation carried out on each

strongly connected component.

3. The CFGs for each function are read in. The

variable usage information computed by the front end

is augmented using the information from the points-

to database.

4. Information about possible uses and definitions of

global variables is computed for each procedure and

each call site. The algorithm used is similar to the

GUSE/GMOD algorithms of Cooper and Kennedy,

except that, to achieve better performance, global

variables are partitioned into equivalence classes.

5. An (intra procedural) reaching-definitions

algorithm is invoked for each procedure, and the

results are used to insert data-dependence edges.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

6. The post dominator relations in the CFGs are

computed and then used to create the control

dependence edges.

7. The CFGs are converted into PDGs, by first

converting each CFG vertex to a corresponding PDG

vertex. The vertex kind is carried across to the PDG

vertex.

The PDGs are then stitched together to create the

SDG .

8. Summary edges are computed. A summary edge

describes the transitive dependence at calsites

between output parameters and input parameters.

Summary edges are an important component of

SDGs because they allow inter procedurally precise

slicing operations to be performed in time linear in

the size of the SDG . The time to compute the

summary edges themselves,however, is bounded by

O.n3., where n is the maximum number of

parameters at any call site. Note that, because

nonlocal variables are treated as parameters, n may

be as large as the total number of nonlocal variables

in the program. This computation is asymptotically

the most significant time and space bottle neck in the

SDG builder.

9. Finally, the graph is completed by adding reversed

edges.

2.4 Managing Complexity

The AST and symbol table are essential for

navigating the type structure of the program

accurately. The call graph, arguably the most

important representation for program understanding,

can be viewed directly. The variable use/def

information and the results of pointer analysis are

very useful for understanding the effects of pointer

indirection.

However, the sheer size and complexity of the

dependence graph makes it impossible to use in its

raw form for software inspection. For example,

depending on various build options, even a small 6.5

KLOC program in our benchmark suite can have

22,000 vertices, with over 60,000 edges. One 75

KLOC program has almost 400,000 vertices, with

over 2,200,000 edges. Clearly, any tool must offer

features to help deal with this complexity. Contents

of Variable Usage Sets for Some Example

Expressions The vast majority of vertices and edges

in the dependence graph have to do with nonlocal

variables. As discussed above, nonlocal variables are

modeled as hidden parameters to functions. The

vertices that correspond to these parameters have

kind global-formal and global-actual, each of which

represents an equivalence set of nonlocal variables.

Unlike vertices that represent expressions or

statements, these vertices have no representation in

the source code of the program.

Other vertices in the dependence graph are

introduced to represent the dependence graph

efficiently, or are present to allow query algorithms

to be expressed cleanly or to execute quickly. The

dependence-graph builder also introduces some

synthetic functions. Functions are created to model

initialization of variables, and to represent indirect

function calls efficiently. Again, these artifacts have

no representation in the source code. Below, we

discuss techniques for hiding this complexity so that

useful information can be extracted.

3. Block Diagram Of The Approach

Parse

Source

Program

Prepare

Abstract

Syntax
Tree (AST)

Preparation of

PDG

Slicing

GUI

Figure 3.1 Block Diagram Of The Approach

As shown in the figure 3.1 above a source program

which is to be inspected is given as an input using

GUI, the program is parsed and abstract syntax tree is

constructed. The PDG is generated to understand the

main flow of the program and then by slicing the

program using forward, backward, predessor or

successor approach the code is segmented for further

analysis. Then CFG algorithm is applied on it to

obtain dominator tree and post dominator tree. The

control dependence graph is constructed to

undertstand the dependancing of a particular variable

in the entire program and its linkage with other

functions and methods. Using this tool it will be easy

to find out bugs in the program and their influence on

the program control flow will be understood.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

4. System Analysis And Design

4.1 Modularization.

 The development of a system generally consists of 2

phases:

 A. System analysis.

 B. System design.

The development can be thought of as a set of

activities that analysts, designer and user carry out to

develop and implement the software. Here, the

activities are closely related and even the order of the

steps in these activities is difficult to determine.

However for the sake of easier understanding, the

entire project can be viewed as a collection of

independent modules.

The modules follow chronological sequence as

under:

• Preliminary investigation

• Determination of system requirements

• System analysis

• Design of System

• Development of software

• System testing

• Implementation and evaluation

4.2 Nature of Process Involved
The development of the project involved the

following processes:

 The Processes

Information Gathering

At this stage, all the initial requirements were

gathered and these were clarified for

understanding.

Analysis

Here, the requirements were analyzed. These

were then categorized so that the incomplete

areas are exposed. Finally, the requirements were

prioritized by the order of their importance.

Proposal and Project Planning

In this stage, the proposal was developed. Then

the project plans were drafted to fulfill the

project requirements.

Design

In this stage, the functional description of the

project is to be given. Then the project is

designed accordingly.

Coding

In this stage, the software coding of the project is

done based on the earlier processes. Also a

documentation of the project is to be given.

Verification (Testing)

This stage can be thought of as a summation of

two processes viz. technical testing and system

testing.

4.3 Process Flow Diagram

 Requirements stage

 (Problem Statement)

(Initial Business Proposal)

Proposal stage

Analysis

Gathering

END

Design stage

(Draft Requirements Specification)

(Requirements Specification)

(Proposal)

(Project Plans)

Proposal and Project Planning

Code stage

Verification stage

(Functional Description)

(Design)

(Code and Unit Test)

(Documentation)

(Technical Testing)

(System Testing)

Change to
Requirements?

Change to
Requirements?

Change to
Requirements?

Change Control

Update all
related
documents,
code, and tests
to reflect the
change

Develop Proposal and
Project Plans to fulfill
project requirements

Analyze requirements, categorize
to expose incomplete areas, and
prioritize by importance

Gather initial requirements,
clarify requirements for
understanding

Gathered Req
Update status with draft

Approved Requirements
Update status upon approval

Committed Requirements
Update status at commitment

Designed Requirements
Update status at design inspection

Implemented Requirements
Update status at code inspection

Completed Requirements
Update status at test completion

Change affects
Requirements
Specification

Change affects
Proposal only

Figure 4.1 Process Flow Diagram

5. Algorithms And Related Theory

5.1 Computation of Basic Blocks

A basic block is a sequence of consecutive

statements in which flow of control enters at

the beginning and leaves at the end without

halt or possibility of branching except at the

end.

We can construct the basic blocks for a

program using algorithm GetBasicBlocks,

shown in When we analyze a program's

intermediate code for the purpose of

performing compiler optimizations, a basic

block usually consists of a maximal

sequence of intermediate code statements.

When we analyze source code, a basic block

consists of a maximal sequence of source

code statements. We often find it more

convenient in the latter case, however, to

just treat each source code statement as a

basic block.

Algorithm GetBasicBlocks

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

Input. A sequence of program statements.

Output. A list of basic blocks with each

statement in exactly one basic block.

 2. Construct the basic blocks using the

leaders. For each leader, its basic block consists of

the leader and all statements up to but not including

the next leader or the end of the program.

5.2 Computing Control Flow Graph

A control flow graph (CFG) is a directed graph in

which each node represents a basic block and each

edge represents the flow of control between basic

blocks. To build a CFG we first build basic blocks,

and then we add edges that represent control flow

between these basic blocks.

 After we have constructed basic blocks, we can

construct the CFG for a program using algorithm

GetCFG, shown in Figure The algorithm also works

for the case where each source statement is treated as

a basic block. To illustrate, consider Figure 3, which

gives the code for program Sums on the left and the

CFG for Sums on the right. Node numbers in the

CFG correspond to statement numbers in Sums: in

the graph, we treat each statement as a basic block.

Each node that represents a transfer of control (i.e., 4

and 7) has two labeled edges emanating from it; all

other edges are unlabeled.

In a CFG, if there is an edge from node Bi to node Bj

, we say that Bj is a successor of Bi and that Bi is a

predecessor of Bj . In the example, node 4 has

successor nodes 5 and 12, and node 4 has predecessor

nodes 3 and 11.

Algorithm GetCFG

Input. A list of basic blocks for a program where the

first block (B1) contains the first program statement.

Output. A list of CFG nodes and edges.

5.3. Computing Dominator Tree

A node D in CFG G dominates a node W in G if and

only if every directed path from entry to W (not

including W) contains D. A dominator tree is a tree

in which the initial node is the entry node, and each

node dominates only its descendants in the tree.

 Algorithm ComputeDom

Input. A control flow graph G with set of nodes N

and initial node n0.

Output. D(n), the set of nodes that dominate n, for

each node n in G

5.4 Control Flow Graph (CFG)

A control flow graph describes the sequence in which

the different instructions of a program get executed.

In other words, a control flow graph describes how

the control flows through the program. In order to

draw the control flow graph of a program, all the

statements of a program must be numbered first. The

different numbered statements serve as nodes of the

control flow graph . An edge from one node to

another node exists if the execution of the statement

representing the first node can result in the transfer of

control to the other node. The CFG for any program

can be easily drawn by knowing how to represent the

sequence, selection, and iteration type of statements

in the CFG. After all, a program is made up from

these types of statements.

5.5 Path

A path through a program is a node and edge

sequence from the starting node to a terminal

node of the control flow graph of a program.

There can be more than one terminal node in a

program. Writing test cases to cover all the paths

of a typical program is impractical. For this

reason, the path-coverage testing does not

require coverage of all paths but only coverage

of linearly independent paths.

5.6 Linearly Independent Path

A linearly independent path is any path through the

program that introduces at least one new edge that is

not included in any other linearly independent paths.

If a path has one new node compared to all other

linearly independent paths, then the path is also

linearly independent. This is because, any path

having a new node automatically implies that it has a

new edge. Thus, a path that is subpath of another path

is not considered to be a linearly independent path.

5.7 Cyclomatic Complexity

For more complicated programs it is not easy to

determine the number of independent paths of the

program. McCabe’s cyclomatic complexity defines

an upper bound for the number of linearly

independent paths through a program. Also, the

McCabe’s cyclomatic complexity is very simple to

compute. Thus, the McCabe’s cyclomatic complexity

metric provides a practical way of determining the

maximum number of linearly independent paths in a

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

program. Though the McCabe’s metric does not

directly identify the linearly independent paths, but it

informs approximately how many paths to look for.

There are three different ways to compute the

cyclomatic complexity. The answers computed by the

three methods are guaranteed to agree.

Method 1:

Given a control flow graph G of a program, the

cyclomatic complexity V(G) can be computed as:

V(G) = E – N + 2

where N is the number of nodes of the control flow

graph and E is the number of edges in the control

flow graph.

For the CFG of example shown in fig. 10.4, E=7 and

N=6. Therefore, the cyclomatic complexity = 7-6+2

= 3.

Method 2:

An alternative way of computing the cyclomatic

complexity of a program from an inspection of its

control flow graph is as follows:

V(G) = Total number of bounded areas + 1

In the program’s control flow graph G, any region

enclosed by nodes and edges can be called as a

bounded area. This is an easy way to determine the

McCabe’s cyclomatic complexity. But, what if the

graph G is not planar, i.e. however you draw the

graph, two or more edges intersect? Actually, it can

be shown that structured programs always yield

planar graphs. But, presence of GOTO’s can easily

add intersecting edges. Therefore, for non-structured

programs, this way of computing the McCabe’s

cyclomatic complexity cannot be used.

The number of bounded areas increases with the

number of decision paths and loops. Therefore, the

McCabe’s metric provides a quantitative measure of

testing difficulty and the ultimate reliability. For the

CFG example shown in fig. 10.4, from a visual

examination of the CFG the number of bounded areas

is 2. Therefore the cyclomatic complexity, computing

with this method is also 2+1 = 3. This method

provides a very easy way of computing the

cyclomatic complexity of CFGs, just from a visual

examination of the CFG. On the other hand, the other

method of computing CFGs is more amenable to

automation, i.e. it can be easily coded into a program

which can be used to determine the cyclomatic

complexities of arbitrary CFGs.

Method 3:

The cyclomatic complexity of a program can also be

easily computed by computing the number of

decision statements of the program. If N is the

number of decision statement of a program, then the

McCabe’s metric is equal to N+1.

5.8 Program Pependence Graph (PDG)

Different definitions of program dependence

representations have been given, depending on the

intended application; however, they are all

variations on a theme and share the common feature

of having explicit representations of both control

dependences and data dependences. We define

program dependence graphs, which can be used to

represent single procedure programs; that is,

programs that consist of a single main procedure,

with no procedure or function calls. The program

dependence graphs (or PDG) for a program P,

denoted by GP, is a directed graphs whose vertices

are connected by several kinds of edges. The vertices

in GP represent the assignment statements and

predicates of P. In addition, GP includes a special

Entry vertex, and also includes one Initial definition

vertex for every variable x that may be used before

being defined. (This vertex represents an assignment

to the variable from the initial state.) The edges of GP

represent control and data dependences.

5.9 Backward Slicing

 A backward slice with respect to a set of starting

points S answers the question “What points in the

program does S depend on?” The control-dependence

edges are used to determine how control could have

reached S, and the data dependence edges are used to

determine how the variables used at S received their

values.

 5.10 Forward Slicing

A forward slice with respect to a set of starting points

S answers the question “What points in the program

depend on S?” In this also we make use of control

and data dependence edges.

5.11 Predecessors

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 8

It is natural for a user attempting to understand a

program to ask “How could variable x have gotten its

value here?” This query can be posed with respect to

the control dependences, the data dependences, or

both. A program point’s data predecessors are the

points where the variables used at that point may

have gotten their values.

5.12 Successors

It is natural for a user attempting to understand a

program to ask “Where is the value generated at this

point used next?” This query can be posed with

respect to the control dependences, the data

dependences, or both. A program point’s data

successors are the points where the variables that

were modified at that point are used.

6. Implementation

The whole system is arranged in the package called

project, this package contains all the necessary files

needed source code and the documentation of the

project. The directory contains the two more

directories one contains the GUI related code and

other contains the back end source code.

7. Conclusion

We have described a tool for inspecting and

manipulating the Control flow graph representation

of a program for the purposes of program

understanding and discussed how it can be used for

software inspections. We have described the means

by which the system answers queries about the

dataflow properties of the program using context-free

language graph reachability. We have described

using a model checker to answer questions about

possible paths through the program. There are two

main thrusts in its development. The first is we have

improved the scalability of the system. This is

achieved partly by using demand-driven techniques

to reduce the up-front cost of building the

dependence graph. The other thrust is we have

extended the domain of applications for the system.

We can make any source program efficient by

minimizing the dependency graph. The Future scope

of this project is one can apply the technology to

software assurance, and to program-testing problems.

8. References

 [1] L.O. Andersen, “Program Analysis and

Specialization for the C Programming

Language,” PhD thesis, DIKU, Univ. of

Copenhagen,May 1994.

[2] T. Ball and S.K. Rajamani, “Bebop: A Symbolic

Model Checker for Boolean Programs,” Proc.

SPIN Workshop, pp. 113-130, 2000.

[3] S. Bates and S. Horwitz, “Incremental Program

Testing Using Program Dependence Graphs,”

Proc. Symp. Princples of Programming

Languages, pp. 384-396, 1993.

[4] P. Bishop, R. Bloomfield, S. Guerra, and T.

Clement, “Software Criticality Analysis of

COTS/SOUP,” Proc. Safecomp 2002, Sept.

2002.

[5] M. Burke and R. Cytron, “Interprocedural

Dependence Analysis and Parallelization,” Proc.

SIGPLAN ’86 Symp. Compiler Construction,pp.

162-175, 1986.

[6] Bell Canada,

http://www.iro.umontreal.ca/labs/gelo/datrix,

2001.

[7] E.M. Clarke, M. Fujita, P.S. Rajan, T. Reps, S.

Shankar, and T. Teitelbaum, “Program Slicing of

Hardware Description Languages,Proc. Conf.

Correct Hardware Design and Verification

Methods (CHARME ’99), Sept. 1999.

[8] E.M. Clarke, O. Grumberg, and D.A. Peled,

Model Checking. MIT Press, 1999.

[9] K.D. Cooper and K. Kennedy, “Interprocedural

Side-Effect Analysis in Linear Time,” Proc.

ACM SIGPLAN 88 Conf. Programming

Language Design and Implementation, pp. 57-

66, June 1988.

[10] J.R. Cordy, C.D. Halpern, and E. Promislow,

“TXL: A Rapid Prototyping System for

Programming Language Dialects,” Computer

Languages, vol. 16, no. 1, pp. 97-107, Jan. 1991.

[11] D.E. Denning and P.J. Denning, “Certification

of Programs for Secure Information Flow,”

Comm. ACM, vol. 20, no. 7, pp. 504-513, July

1977

[12] J. Drake, V. Mashayekhi, J. Riedl, and W. Tsai,

“A Distributed Collaborative Software

Inspection Tool: Design, Prototype, and Early

Trial,” Technical Report TR-91-30, Univ. of

Minnesota, Aug. 1991.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 9

[13] A. Dunsmore, “Comprehension and

Visualisation of Object- Oriented Code for

Inspections,” Technical Report EFoCS-33-98,

Computer Science Dept., Univ. of Strathclyde,

1998.

[14] D. Engler, B. Chelf, A. Chou, and S. Hallem,

“Checking System Rules Using System-Specific,

Programmer-Written Compiler Extensions,”

Proc. Fourth Symp. Operating Systems Design

and Implementation, pp. 1-16, Oct. 2000.

 15] J. Esparza, D. Hansel, P. Rossmanith, and S.

Schwoon, “Efficient Algorithms for Model

Checking Pushdown Systems,” Computer Aided

Verification, pp. 232-247, 2000.

