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ABSTRACT : Although software inspection has led 

to improvements in software quality, many software 

systems continue to be deployed with unacceptable 

numbers of errors, even when software inspection is 

part of the development process. The difficulty of 

manually verifying that the software under inspection 

conforms to the rules is partly to blame. We describe 

the design and development of a tool designed to help 

alleviate this problem. The tool provides mechanisms 

for   inspection of software by exposing the results of 

sophisticated whole-program static analysis to the 

inspector. The tool computes many static-semantic 

representations of the program, forward and 

backward slicing and dependence factors. Whole-

program pointer analysis is used to make sure that the 

representation is precise with respect to aliases 

induced by pointer usage. Views on the dependency 

and related representations are supported. Queries on 

the dependence graph allow an inspector to answer 

detailed questions about the semantics of the 

program. Facilities for openness and extensibility 

permit the tool to be integrated with many software-

development processes. The main challenge of the 

approach is to provide facilities to navigate and 

manage the enormous complexity of the dependence 

graph. Which will test the correctness of the program 

by identifying some of the rules .Whether particular 

variable in the program is working or malfunctioning, 

Checking the malfunctioning by the dependency 

factors by using backward and forward slicing. This 

will identify the checkpoints and not to identify the 

errors and which area a particular checkpoint is 

getting effected will be reflected. 

 

Keywords – Abstract Syntax Tree, Program 

Dependence Graph (PDG), Predecessor, Slicing, 

Successor.  

1. Introduction 

1.1 Why use testing? 

"Testing can consume over 50 percent of 

software development costs (note that testing 

costs should not include debugging and rework 

costs). In one particular case, NASA's Apollo 

program, 80 percent of the total software 

development effort was incurred by 

testing."Some projects canԀ t afford any failures 

at all during operation like the Apollo project. It 

can also be that the customers accept some faults 

that are fixed later under maintenance because 

the product will be cheaper. So the time spent 

during testing much depends on what reliability 

level that are asked for. One advantage with 

testing can be that it is closer to the way the end-

user will use the system. They will fell that the 

product has a higher quality because the defects 

is outside the normal execution. The program 

will become more reliable by finding the most 

common failures. 

Inspection will more look for correctness there a 

more common executed fault and a more rarely 

fault is equally easy to find. I have found in the 

project that I have been involved in that the test 

phase often has less priority than other phases. If 

the project is getting late is it likely that the time 

for testing will be cut down. This can especially 

be a problem if the test phase is located at the 

end of the project and not during the entire 

project. Inspection can be effective when same 

method can be used on a lot of different 

documents and testing is effective when it comes 

to rerunning the same test.  

A good tool for automated testing can take some 

time to develop but can be executed many times. 

This can save a lot of time because many 

systems today are released over and over again. 

One problem with automated tools is that we 

need to write additional code and we will not 

know if the defect is in the systems code or in 

the test code. There exist areas where testing is 
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the only option and where you canԀ t find the 

defects with inspection. Example is tests that test 

if the system has the right quality attributes with 

performance and stress testing. But it is also 

when the developer doesn’t have  access  to     

the code such as with third party software 

components and different APIԀ s. Different 

environments outside the program must also be 

tested, for example running Java applications in 

different operative systems or applets in different 

browsers. But there are also things that you can’t 

find with testing such as lack of traceability, 

design faults etc. It can also be easy to miss 

faults in code that is not normally executed like 

exceptions handing. 

1.2. Nothing is perfect 

Inspections focuses on finding faults, whereas 

testing mainly focuses on finding failures (which 

are the result of one or many faults). They are 

more compliments to each other than competing 

methods because they are used to find different 

faults and in different areas. 

Developers will probably need to use both 

inspection and testing to achieve a product with 

high quality and still be within budget. ” 

Software inspections can identify and eliminate 

approximately 80 percent of all software defects 

during development. When inspections are 

combined with normal testing practices, defects 

in fielded software can be reduced by a factor of 

10.” However, researches have shown that the 

order in which the inspection and the testing are 

performed will affect the number of defects 

found. The best way, according to these 

researches, are to make inspection first and after 

that the testing. Thus, What we have found when 

reading about the two methods is that both is 

good and must be used to achieve a product that 

has a high quality and satisfies the end users. 

They are used for different reasons and in 

different phases during the project. Each 

technique has its advantage and way of 

approaching the search for defects. Their 

respective strengths help finding different kinds 

of defects. 

Inspections are better for finding errors in 

design, requirements documents, source code 

etc. Testing is the only way of finding 

operational defects, and to make sure that non-

functional requirements are working as they are 

supposed to. 

Tests cannot find errors in requirements 

documents or in the source code. It depends on 

previous experience and knowledge about the 

problem domain among the team members 

which method that is used. The people 

performing an inspection may not have the 

necessary knowledge about the product domain 

or they may be overloaded with information in 

the initial stage of the inspection, etc then defects 

can easily be missed. Testers don’t have the 

same problem because they have test cases to 

follow. 

2. Dependence Graphs 

  

Dependence graphs have applications in a wide range 

of activities, including parallelization , optimization , 

reverse engineering, program testing , and software 

assurance . Fig. 1 shows the dependence-graph 

representation for a simple program with two 

procedures. This section briefly describes 

dependence graphs and how they are built.  

 

A Program Dependence Graph (PDG)  is a directed 

graph for a single procedure of a program. The 

vertices of the graph represent constructs such as 

assignment statements, call sites, parameter ,and 

condition branches. 

 
Figure 2.1 Program Dependance Graph 

 

An edge between the vertices indicates either a data 

dependence or a control dependence. The data-

dependence edges indicate possible ways in which 

data values can be transmitted. For example, in Fig. 

1, there is a data dependence edge between the vertex 

for i=1 and the vertex for while (i < 11), which 

indicates that a value for i may flow between those 

two vertices. 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 3, June-July, 2014 

ISSN: 2320 – 8791 (Impact Factor: 1.479)  

www.ijreat.org 

 

www.ijreat.org 
                              Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)                      3 

A control-dependence edge between a source vertex 

and a destination vertex indicates that the result of 

executing the source vertex controls whether or not 

the destination vertex is reached. For example, in Fig. 

1, there is a control dependence edge between the 

vertex for while (i<11) and the vertices for the two 

call sites on the function add. A System Dependence 

Graph (SDG) is a directed graph consisting of 

interconnected PDGs , one per procedure in the 

program. Inter procedural control-dependence edges 

connect procedure call sites to the entry points of 

called procedures. Inter procedural data-dependence 

edges represent the flow of data between actual 

parameters and formal parameters (and return 

values). Nonlocal variables, such as global, file 

statics, and variables accessed indirectly through 

pointers, are handled by modeling the program as if 

those variables are passed in and out as parameters to 

the program’s procedures. Each nonlocal variable 

used in a function, either directly or indirectly, is 

treated as a “hidden” input parameter and, thus, gives 

rise to additional program points. These serve as the 

function’s local working copy of the nonlocal 

variable. If the variable is modified in the function, 

then it has an associated output parameter as well. 

The process of creating the dependence graph is 

described in the following sections. 

2.1 Front End 

For each source file in the system, a language-

specific front end is invoked. Its responsibility is to 

create intermediate files that will be used in 

subsequent phases: 

1. Information from the preprocessor phase, such as 

the include tree and macro usage, is recorded. 

Information about the basic structure of the 

preprocessed source file is recorded. In particular, the 

line and column numbers of each construct in the 

source file are recorded. 

2. The occurrences and usages of pointer variables 

are collected. 

3. The abstract syntax tree (AST) and symbol table 

are created. These are then used to create a control-

flow graph (CFG).  

2.2 Pointer Analysis 

The pointer-analysis phase creates the points-to graph 

for the entire program. A points-to graph is a directed 

graph with vertices corresponding to variables (and 

structure fields, arrays, and procedures) and edges 

indicating the points-to relation between variables  . 

For example, if during program execution x may hold 

the address of y, then the points-to graph contains an 

edge from x to y. Heap allocated memory is modeled 

by introducing one synthetic variable for each 

occurrence in the program of a construct that 

allocates memory from the heap. Pointers to heap 

allocated variables are said to point to these synthetic 

variables. Constant pointer-valued objects, such as 

strings, can be modeled either individually, or via a 

single abstract location which acts as a proxy for 

them all. The main pointer analysis algorithm 

implemented is that due to Andersen , with an option 

to treat structure fields separately. The points-to 

graph is written out as a database. This database is 

consulted during phases of the SDG builder. 

2.3 The SDG Builder 

The SDG builder creates the final dependence graph 

in several phases. The graph is stored in its entirety in 

memory that is memory-mapped to a file. 

1. A first approximation to the call graph is created 

by reading the CFGs for all source files, extracting 

callsite vertices, and connecting them with call edges. 

2. The final call graph is created by resolving indirect 

call sites by consulting the previously created point 

sto database. An indirect call through a pointer fp is 

treated as a possible call to all functions in the points-

to set of fp. 

A depth-first search is then performed on the call 

graph to partition it into strongly connected 

components. Several subsequent phases are carried 

out by traversals over the partitioned call graph, often 

with an iterative computation carried out on each 

strongly connected component. 

3. The CFGs for each function are read in. The 

variable usage information computed by the front end 

is augmented using the information from the points-

to database. 

4. Information about possible uses and definitions of 

global variables is computed for each procedure and 

each call site. The algorithm used is similar to the 

GUSE/GMOD algorithms of Cooper and Kennedy, 

except that, to achieve better performance, global 

variables are partitioned into equivalence classes. 

5. An (intra procedural) reaching-definitions 

algorithm is invoked for each procedure, and the 

results are used to insert data-dependence edges. 
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6. The post dominator relations in the CFGs are 

computed and then used to create the control 

dependence edges. 

7. The CFGs are converted into PDGs, by first 

converting each CFG vertex to a corresponding PDG 

vertex. The vertex kind is carried across to the PDG 

vertex. 

The PDGs are then stitched together to create the  

SDG . 

8. Summary edges are computed. A summary edge 

describes the transitive dependence at calsites 

between output parameters and input parameters. 

Summary edges are an important component of 

SDGs because they allow inter procedurally precise 

slicing operations to be performed in time linear in 

the size of the SDG . The time to compute the 

summary edges themselves,however, is bounded by 

O.n3., where n is the maximum number of 

parameters at any call site. Note that, because 

nonlocal variables are treated as parameters, n may 

be as large as the total number of nonlocal variables 

in the program. This computation is asymptotically 

the most significant time and space bottle neck in the 

SDG builder. 

9. Finally, the graph is completed by adding reversed 

edges. 

2.4 Managing Complexity 

The AST and symbol table are essential for 

navigating the type structure of the program 

accurately. The call graph, arguably the most 

important representation for program understanding, 

can be viewed directly. The variable use/def 

information and the results of pointer analysis are 

very useful for understanding the effects of pointer 

indirection. 

However, the sheer size and complexity of the 

dependence graph makes it impossible to use in its 

raw form for software inspection. For example, 

depending on various build options, even a small 6.5 

KLOC program in our benchmark suite can have 

22,000 vertices, with over 60,000 edges. One 75 

KLOC program has almost 400,000 vertices, with 

over 2,200,000 edges. Clearly, any tool must offer 

features to help deal with this complexity. Contents 

of Variable Usage Sets for Some Example 

Expressions The vast majority of vertices and edges 

in the dependence graph have to do with nonlocal 

variables. As discussed above, nonlocal variables are 

modeled as hidden parameters to functions. The 

vertices that correspond to these parameters have 

kind global-formal and global-actual, each of which 

represents an equivalence set of nonlocal variables. 

Unlike vertices that represent expressions or 

statements, these vertices have no representation in 

the source code of the  program. 

Other vertices in the dependence graph are 

introduced to represent the dependence graph 

efficiently, or are present to allow query algorithms 

to be expressed cleanly or to execute quickly. The 

dependence-graph builder also introduces some 

synthetic functions. Functions are created to model 

initialization of variables, and to represent indirect 

function calls efficiently. Again, these artifacts have 

no representation in the source code. Below, we 

discuss techniques for hiding this complexity so that 

useful information can be extracted. 

3. Block Diagram Of The Approach 
        

Parse

Source 

Program

Prepare

Abstract 

Syntax 
Tree (AST)

Preparation of

PDG

Slicing 

GUI

 
 

Figure 3.1  Block Diagram Of The Approach 

 

As shown in the figure 3.1 above a source program 

which is to be inspected is given as an input  using 

GUI, the program is parsed and abstract syntax tree is 

constructed. The PDG is generated to understand the 

main flow of the program and then by slicing the 

program using forward, backward, predessor or 

successor approach  the code is segmented for further 

analysis. Then CFG algorithm is applied on it to 

obtain dominator tree and post dominator tree. The 

control dependence graph is constructed to  

undertstand the dependancing of a particular variable 

in the entire program and its linkage with other 

functions and methods.  Using this tool it will be easy 

to find out bugs in the program and their influence on 

the program control flow will be understood. 
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4. System Analysis And Design 

 
4.1 Modularization. 

  The development of a system generally consists of 2 

phases:  

       A. System analysis.  

       B. System design. 

The development can be thought of as a set of 

activities that analysts, designer and user carry out to 

develop and implement the software. Here, the 

activities are closely related and even the order of the 

steps in these activities is difficult to determine. 

However for the sake of easier understanding, the 

entire project can be viewed as a collection of 

independent modules. 

The modules follow chronological sequence as 

under: 

•  Preliminary investigation 

•  Determination of system requirements 

•  System analysis 

•  Design of System 

•  Development of software 

•  System testing 

•  Implementation and evaluation 

4.2 Nature of Process Involved 
The development of the project involved the 

following processes: 

     The Processes 

Information Gathering 

At this stage, all the initial requirements were 

gathered and these were clarified for 

understanding. 

Analysis 

Here, the requirements were analyzed. These 

were then categorized so that the incomplete 

areas are exposed. Finally, the requirements were 

prioritized by the order of their importance. 

Proposal and Project Planning 

In this stage, the proposal was developed. Then 

the project plans were drafted to fulfill the 

project requirements. 

Design 

In this stage, the functional description of the 

project is to be given. Then the project is 

designed accordingly. 

Coding 

In this stage, the software coding of the project is 

done based on the earlier processes. Also a 

documentation of the project is to be given. 

Verification (Testing) 

This stage can be thought of as a summation of 

two processes viz. technical testing and system 

testing. 

4.3 Process Flow Diagram 

 Requirements stage 

     (Problem Statement) 

(Initial Business Proposal) 

 

Proposal  stage 

Analysis 

Gathering 

END 

Design stage 

(Draft Requirements Specification) 

(Requirements Specification) 

(Proposal) 

(Project Plans) 

Proposal and Project Planning 

Code stage 

Verification stage 

(Functional Description) 

(Design) 

(Code and Unit Test) 

(Documentation) 

(Technical Testing) 

(System Testing) 

Change to 
Requirements? 

Change to 
Requirements? 

Change to 
Requirements? 

Change Control 

Update all 
related 
documents, 
code, and tests 
to reflect the 
change 

Develop Proposal and 
Project Plans to fulfill 
project requirements 

Analyze requirements, categorize 
to expose incomplete areas, and 
prioritize by importance 

Gather initial requirements, 
clarify requirements for 
understanding 

Gathered Req 
Update status with draft 

Approved Requirements 
Update status upon approval 

Committed Requirements 
Update status at commitment 

Designed Requirements 
Update status at design inspection 

Implemented Requirements 
Update status at code inspection 

Completed Requirements 
Update status at test completion 

Change affects 
Requirements 
Specification 

Change affects 
Proposal only 

 

Figure 4.1 Process Flow Diagram 

5. Algorithms And Related Theory 

5.1 Computation of Basic Blocks 

A basic block is a sequence of consecutive 

statements in which flow of control enters at 

the beginning and leaves at the end without 

halt or possibility of branching except at the 

end. 

We can construct the basic blocks for a 

program using algorithm GetBasicBlocks, 

shown in  When we        analyze a program's 

intermediate code for the purpose of 

performing compiler optimizations, a basic 

block usually consists of a maximal 

sequence of intermediate code statements. 

When we analyze source code, a basic block 

consists of a maximal sequence of source 

code statements. We often find it more 

convenient in the latter case, however, to 

just treat each source code statement as a 

basic block. 

Algorithm GetBasicBlocks 
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Input.  A sequence of program statements. 

Output.  A list of basic blocks with each 

statement in exactly one basic block. 

               2. Construct the basic blocks using the 

leaders. For each leader, its basic block consists of 

the leader and all statements up to but not including 

the next leader or the end of the program. 

 

5.2 Computing Control Flow Graph 

A control flow graph (CFG) is a directed graph in 

which each node represents a basic block and each 

edge represents the flow of control between basic 

blocks. To build a CFG we first build basic blocks, 

and then we add edges that represent control flow 

between these basic blocks. 

 After we have constructed basic blocks, we can 

construct the CFG for a program using algorithm 

GetCFG, shown in Figure The algorithm also works 

for the case where each source statement is treated as 

a basic block. To illustrate, consider Figure 3, which 

gives the code for program Sums on the left and the 

CFG for Sums on the right. Node numbers in the 

CFG correspond to statement numbers in Sums: in 

the graph, we treat each statement as a basic block. 

Each node that represents a transfer of control (i.e., 4 

and 7) has two labeled edges emanating from it; all 

other edges are unlabeled. 

In a CFG, if there is an edge from node Bi to node Bj 

, we say that Bj is a successor of Bi and that Bi is a 

predecessor of Bj . In the example, node 4 has 

successor nodes 5 and 12, and node 4 has predecessor 

nodes 3 and 11. 

Algorithm GetCFG 

Input.  A list of basic blocks for a program where the 

first block (B1) contains the first program statement. 

Output. A list of CFG nodes and edges. 

5.3. Computing Dominator Tree 

A node D in CFG G dominates a node W in G if and 

only if every directed path from entry to W (not 

including W) contains D. A dominator tree is a tree 

in which the initial node is the entry node, and each 

node dominates only its descendants in the tree. 

 Algorithm ComputeDom 

Input. A control flow graph G with set of nodes N 

and initial node n0. 

Output. D(n), the set of nodes that dominate n, for 

each node n in G 

5.4 Control Flow Graph (CFG) 

A control flow graph describes the sequence in which 

the different instructions of a program get executed. 

In other words, a control flow graph describes how 

the control flows through the program. In order to 

draw the control flow graph of a program, all the 

statements of a program must be numbered first. The 

different numbered statements serve as nodes of the 

control flow graph . An edge from one node to 

another node exists if the execution of the statement 

representing the first node can result in the transfer of 

control to the other node. The CFG for any program 

can be easily drawn by knowing how to represent the 

sequence, selection, and iteration type of statements 

in the CFG. After all, a program is made up from 

these types of statements.  

5.5 Path  

 

A path through a program is a node and edge 

sequence from the starting node to a terminal 

node of the control flow graph of a program. 

There can be more than one terminal node in a 

program. Writing test cases to cover all the paths 

of a typical program is impractical. For this 

reason, the path-coverage testing does not 

require coverage of all paths but only coverage 

of linearly independent paths.  

5.6 Linearly Independent Path  

A linearly independent path is any path through the 

program that introduces at least one new edge that is 

not included in any other linearly independent paths. 

If a path has one new node compared to all other 

linearly independent paths, then the path is also 

linearly independent. This is because, any path 

having a new node automatically implies that it has a 

new edge. Thus, a path that is subpath of another path 

is not considered to be a linearly independent path.  

5.7 Cyclomatic Complexity  

For more complicated programs it is not easy to 

determine the number of independent paths of the 

program. McCabe’s cyclomatic complexity defines 

an upper bound for the number of linearly 

independent paths through a program. Also, the 

McCabe’s cyclomatic complexity is very simple to 

compute. Thus, the McCabe’s cyclomatic complexity 

metric provides a practical way of determining the 

maximum number of linearly independent paths in a 
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program. Though the McCabe’s metric does not 

directly identify the linearly independent paths, but it 

informs approximately how many paths to look for.  

There are three different ways to compute the 

cyclomatic complexity. The answers computed by the 

three methods are guaranteed to agree.  

Method 1:  

Given a control flow graph G of a program, the 

cyclomatic complexity V(G) can be computed as:  

V(G) = E – N + 2  

where N is the number of nodes of the control flow 

graph and E is the number of edges in the control 

flow graph.  

For the CFG of example shown in fig. 10.4, E=7 and 

N=6. Therefore, the cyclomatic complexity = 7-6+2 

= 3.  

Method 2:  

An alternative way of computing the cyclomatic 

complexity of a program from an inspection of its 

control flow graph is as follows:  

V(G) = Total number of bounded areas + 1  

In the program’s control flow graph G, any region 

enclosed by nodes and edges can be called as a 

bounded area. This is an easy way to determine the 

McCabe’s cyclomatic complexity. But, what if the 

graph G is not planar, i.e. however you draw the 

graph, two or more edges intersect? Actually, it can 

be shown that structured programs always yield 

planar graphs. But, presence of GOTO’s can easily 

add intersecting edges. Therefore, for non-structured 

programs, this way of computing the McCabe’s 

cyclomatic complexity cannot be used.  

The number of bounded areas increases with the 

number of decision paths and loops. Therefore, the 

McCabe’s metric provides a quantitative measure of 

testing difficulty and the ultimate reliability. For the 

CFG example shown in fig. 10.4, from a visual 

examination of the CFG the number of bounded areas 

is 2. Therefore the cyclomatic complexity, computing 

with this method is also 2+1 = 3. This method 

provides a very easy way of computing the 

cyclomatic complexity of CFGs, just from a visual 

examination of the CFG. On the other hand, the other 

method of computing CFGs is more amenable to 

automation, i.e. it can be easily coded into a program 

which can be used to determine the cyclomatic 

complexities of arbitrary CFGs.  

Method 3:  

The cyclomatic complexity of a program can also be 

easily computed by computing the number of 

decision statements of the program. If N is the 

number of decision statement of a program, then the 

McCabe’s metric is equal to N+1. 

 

5.8 Program Pependence Graph (PDG) 

Different definitions of program dependence 

representations have been given, depending on the 

intended application;   however, they are all 

variations on a theme and share the common feature 

of having explicit representations of both control 

dependences and data dependences. We define 

program dependence graphs, which can be used to 

represent single procedure programs; that is, 

programs that consist of a single main procedure, 

with no procedure or function calls.  The program 

dependence graphs (or PDG) for a program P, 

denoted by GP, is a directed graphs whose vertices 

are connected by several kinds of edges. The vertices 

in GP represent the assignment statements and 

predicates of P. In addition, GP includes a special 

Entry vertex, and also includes one Initial definition 

vertex for every variable x that may be used before 

being defined. (This vertex represents an assignment 

to the variable from the initial state.) The edges of GP 

represent control and data dependences.  

 

5.9 Backward Slicing 

 A backward slice with respect to a set of starting 

points S answers the question “What points in the 

program does S depend on?” The control-dependence 

edges are used to determine how control could have 

reached S, and the data dependence edges are used to 

determine how the variables used at S received their 

values. 

  5.10 Forward Slicing 

A forward slice with respect to a set of starting points 

S answers the question “What points in the program 

depend on S?” In this also we make use of control 

and data dependence edges. 

5.11  Predecessors 
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It is natural for a user attempting to understand a 

program to ask “How could variable x have gotten its 

value here?” This query can be posed with respect to 

the control dependences, the data dependences, or 

both. A program point’s data predecessors are the 

points where the variables used at that point may 

have gotten their values. 

5.12 Successors 

It is natural for a user attempting to understand a 

program to ask “Where is the value generated at this 

point used next?”  This query can be posed with 

respect to the control dependences, the data 

dependences, or both. A program point’s data 

successors are the points where the variables that 

were modified at that point are used. 

6. Implementation 

The whole system is arranged in the package called 

project, this package contains all the necessary files 

needed source code and the documentation of the 

project. The directory contains the two more 

directories one contains the GUI related code and 

other contains the back end source code. 

 

7. Conclusion 

We have described a tool for inspecting and 

manipulating the Control flow graph representation 

of a program for the purposes of program 

understanding and discussed how it can be used for 

software inspections. We have described the means 

by which the system answers queries about the 

dataflow properties of the program using context-free 

language graph reachability. We have described 

using a model checker to answer questions about 

possible paths through the program. There are two 

main thrusts in its development. The first is we have 

improved the scalability of the system. This is 

achieved partly by using demand-driven techniques 

to reduce the up-front cost of building the 

dependence graph. The other thrust is we have 

extended the domain of applications for the system. 

We can make any source program efficient by 

minimizing the dependency graph. The Future scope 

of this project is one can apply the technology to 

software assurance, and to program-testing problems. 
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